Azulene Unit Fused Cyclopentadienide, Fulvene, and Calicene

Zen-ichi Yoshida,* Mitsuhiro Shibata, Akihiko Sakai, and Toyonari Sugimoto
Contribution from the Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan. Received March 8, 1984. Revised Manuscript Received May 18, 1984

Abstract

The π-conjugation mode of cyclopent[$\left[\right.$] azulenide (4), a new tricyclic anionic system, is elucidated from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, $\mathrm{p} k_{\mathrm{a}}$ value, and MO calculation. Consequently, it is demonstrated that 4 is a considerably stable aromatic anion and that the peripheral 14π-conjugation structure rather than the azulene-type 10π - or cyclopentadienide-type 6π-conjugation structure plays an important role for the ground state of 4. This contrasts dramatically with the case of benzene unit fused polycyclic anionic systems (e.g., indenide) where the benzene-type 6π-conjugation structure prevails. As perturbed systems of $\mathbf{4}$, its fulvene and fulvalene derivatives ($\mathbf{1 9 a}, \mathbf{1 9 b}$, and $\mathbf{2 0}$) are synthesized. On the basis of the NMR data, the π-electron delocalization of their tricyclic anionic parts is discussed in connection with the contribution of polarized structures.

The π-conjugation mode in polycyclic conjugated π-systems containing more than one ($4 n+2$) π-electron-conjugation loop is an intriguing subject from both theoretical and experimental viewpoints, For instance, as shown in Scheme I, naphthalene (1), an alternant bicyclic π-conjugated system, is stabilized by the two benzene-type 6π-conjugations (1a) more than by the peripheral 10π-conjugation (1b). ${ }^{1}$ The same type of stabilization is observed for benzene unit fused bicyclic anionic systems, For example, it is well-known that indenide (2) is stabilized by the large contribution of the benzene $6 \pi-+$ allyl anion 4π-type conjugation (2a) rather than by the cyclopentadienide $6 \pi-+$ butadiene 4π-type conjugation (2b) or peripheral 10π-type conjugation (2c), as is obvious from the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2 and the $\mathrm{p} k_{\mathrm{a}}$ value of its conjugate acid, ${ }^{2}$ As discussed above, in polycyclic neutral and anionic systems involving a benzene unit, the benzene (6π) type conjugation does significantly contribute to the ground state and outweighs the peripheral π-conjugation. On the contrary, azulene, a nonalternant bicyclic π-conjugated system has a crucial contribution of the peripheral 10π-conjugation ($\mathbf{3 b}$). ${ }^{1}$ Under those circumstances, the π-conjugation mode in nonalternant tricyclic anionic systems is of particular interest. In this paper, we wish to disclose the aromaticity and π-conjugation mode of cyclopent [e]azulenide (4), one isomer of the azulene unit fused cy-

4

5

6
clopentadienides, based on its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data and on MO considerations. In addition, the π-conjuation mode of the other two possible azulene unit fused cyclopentadienides (15 and 16) will be discussed by the examination of ring currents in various loops in these molecules, Furthermore we wish to describe the synthesis of quite new systems, azulene unit fused fulvene 5 and calicene 6 as the perturbed system of $\mathbf{4}$ and to discuss the possible π-conjugation mode in both 5 and 6 .

Results and Discussion

Characterization of Cyclopent[e]azulenide. Cyclopent[e]azulenide (4) was prepared by n-butyllithium treatment of a mixture

[^0]Scheme I

Scheme II ${ }^{a}$

a (i) (1) LDA, (2) $\mathrm{CH}_{3} \mathrm{SSCH}_{3}$; (ii) $\mathrm{NaIO}_{4}, \mathrm{CH}_{3} \mathrm{OH}$; (iii) CCl_{4}, Δ; (iv) $n-B u L i,-30^{\circ} \mathrm{C}$.

Table I, Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectral Data between 4 and Azulene ${ }^{5}$

of 1 H - and 3 H -cyclopent [e] azulenes ($\mathbf{1 0 a}$ and $\mathbf{1 0 b}$) synthesized from 4,5 -cyclopentenoazulene (7) ${ }^{3}$ as previously reported (Scheme II). ${ }^{4} 4$ was shown to be stable in tetrahydrofuran. For example,
(3) Jutz, C.; Schweiger, E. Synthesis 1974, 193.

Figure $1,{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 in THF- d_{8} at $-30^{\circ} \mathrm{C}$.

Figure 2, Charge distribution of 4 (left) and azulene (right) by MINDO/3.

UV spectra of $\mathbf{4}$ did not change even at room temperature for a long time (>1 week) under a thoroughly oxygen- and moisture-free environment. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are shown in Figure 1 (equivalent signals for $\mathrm{H}_{1,9}, \mathrm{H}_{2,8}, \mathrm{H}_{3,7}$, and $\mathrm{H}_{4,6}$ and seven signals in the ${ }^{13} \mathrm{C}$ NMR spectra), from which it is evident that 4 possesses a time-averaged $C_{2 v}$ molecular symmetry. From comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shift values of 4 with those of azulene, ${ }^{5}$ all the protons ($0.2-1.1 \mathrm{ppm}$) and carbons ($2,9-14.9 \mathrm{ppm}$) of 4 are demonstrated to be shifted to higher magnetic field than those of azulene (Table I). These results indicate the distribution of anionic charge on the peripheral framework of 4 and delocalization of 14π-electrons on the periphery. Further evidence for the peripheral conjugation in 4 can be given by the appearance of a diamagnetic ring current expected for a peripheral 14π-system. Thus, when compared with the ${ }^{1} \mathrm{H}$ chemical shifts ($\delta 5.2-5,9$) of phenalenide (11), ${ }^{6}$ a nonaromatic, tricyclic anionic system with

11

12
an isoelectronic π-structure to 4 , all the protons of 4 appear at somewhat lower magnetic field ($\delta 6.1-7,6$), albeit not as low as those in [13] annulenide (12) ($\delta 7.1-8.2$), an aromatic tricyclic anionic system with an isoelectronic π-structure to $4 .{ }^{7}$

Though, in accord with the interpretation of NMR data, MINDO/3 calculation shows that all the carbons of 4 are more

[^1]

0,124B

4
0,299ㄹ

16
0,308﹎

Figure 3, Resonance energies of 4,15 , and 16.

Scheme IV

negatively charged than those of azulene (Figure 2), an unbalanced charge distribution is observed in $4\left(\mathrm{C}_{1},-0,16, \mathrm{C}_{2}, 0,01 ; \mathrm{C}_{4}, 0,08\right)$. This suggests that contributions of the 10π-conjugation structure of the azulene part and 6π-conjugation structure of the cyclopentadienide part are not negligible.

The reactivity of 4 toward electrophiles was examined in connection with the question of charge distribution. Treatment of a tetrahydrofuran solution of 4 with excess iodomethane was shown to afford a mixture of 1-and 3-methylcyclopent [e]azulenes (13 a and 13 b) in a ratio of ca. $6 ; 1$ from its $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum. Thus, a dominant pair of olefinic ${ }^{1} \mathrm{H}$ signals appears at $\delta 6.81(\mathrm{dd}, 1 \mathrm{H}, J=5.5,1.2 \mathrm{~Hz})$ and $6.52(\mathrm{dd}, 1 \mathrm{H}, J=5.5$, $2,0 \mathrm{~Hz}$), which are assigned to H_{2} and H_{3} of 13a from the correspondence with the chemical shift values of $\mathrm{H}_{2,3}$ of $\mathbf{1 0 a}$. The methyl ${ }^{1} \mathrm{H}$ signals for 13 a are observed at $\delta 1.50(\mathrm{~d}, 3 \mathrm{H}, \mathrm{Me}, J$ $=7,4 \mathrm{~Hz}$), while 13b exhibits the corresponding signals at $\delta 1.31$ (d, 3 H , Me, $J=7,4 \mathrm{~Hz}$) ${ }^{8} \quad$ Formation of 1- and 3-methyl derivatives of 4 by the attack of iodomethane accords with the expectation from the MINDO/3 charge distribution (Scheme III). On treatment with silica gel, the mixture suffered isomerization to give the thermodynamically more stable isomers ($\mathbf{1 4 a}$ and $\mathbf{1 4 b}$). Also, in the reaction of $\mathbf{4}$ with triethyloxonium tetrafluoroborate, the 1 -ethyl derivative was mainly obtained together with the 3-ethyl derivative in analogy with the case of the reaction with iodomethane.

In order to examine the stability of 4 in comparison with cyclopentadienide and indenide, an average $\mathrm{p} k_{\mathrm{a}}$ of $\mathbf{1 0}$ was estimated by reference to acidities of other compounds. The reaction of $\mathbf{1 0}$ with an equimolar amount of lithium cyclopentadienide in tetrahydrofuran at $-78^{\circ} \mathrm{C}$ gave a reddish purple solution as observed above, which afforded the methylated products (13a and 13b) in quantitative yield by treatment with an excess of iodomethane (Scheme IV). On the other hand, when in the above reaction lithium malononitrile was used in place of lithium cyclopentadienide, no formation of 13 a and 13 b was observed, suggesting that an average $\mathrm{p} k_{\mathrm{a}}$ value of $\mathbf{1 0}$ ranges from 12 to 15 , the respective $\mathrm{p} k_{\mathrm{a}}$ values of malononitrile and cyclopentadiene. It is noteworthy that the stability of 4 presents a striking contrast to
(8) The olefinic protons of 13b cannot be assigned because of the overlap with those of 13 a .
4

$0,200 I_{0}$
$0.132 \mathrm{x}_{0}$
(a)

$-0.090 I_{0}$
$-0.125 x_{0}$
(b)

$0,192 \mathrm{I}_{0}$
$0.396 x_{0}$
(c)

$0.655 \mathrm{I}_{0}$
$1,783 \times 0$
(d)

(a)

$0,056 \mathrm{I}_{0}$
0.037×0
(b)

$-0.419 I_{0}$
$-0.586 x_{0}$
(c)

$-0.380 I_{0}$
$-0.504 x_{0}$
(d)

$0.334 I_{0}$
$0,689 x_{0}$
(e)

$0,980 I_{0}$
$2.669 x_{0}$
(f)

$0.212 \mathrm{I}_{0}$

$$
0,140 x_{0}
$$

(a)

$-0.115 x_{0}$
(b)

$0.204 I_{0}$
$0.420 x_{0}$
(c)

(d)

Figure 4, Ring currents and magnetic susceptibilities of 4, 15, and 16 ($I_{0}=$ ring current of benzene, $\chi_{0}=$ magnetic susceptibility of benzene).
that of cyclopent[a]azulenide (15), one of three isomers of azulene unit cata-fused to cyclopentadienides, ${ }^{9}$ whose conjugate acid was estimated to have a very high $\mathrm{p} k_{\mathrm{a}}$ value (ca. 22) comparable with those of phenalene and indene.
Theoretical Estimation of Resonance Energy, Ring Current and Magnetic Susceptibility of Three Azulene Unit Fused Cyclopentadienides (4, 15, and 16), Resonance energies of possible isomers of cyclopentazulenyl anions were estimated using Aihara's method. ${ }^{10}$ The results are summarized in Figure 3. Obviously, 4 has a considerably large resonance energy compared with that of 15 , This is in good accord with the estimated $\mathrm{p} k_{\mathrm{a}}$ value. Also, it should be noted that cyclopent[f]azulenyl anion (16), which is still an unknown compound, has a comparable resonance energy with 4 , suggesting that 16 should be a relatively stable anion. Ring currents and magnetic susceptibilities of 4,15 , and 16 were also calculated by Aihara's method. ${ }^{11}$ The results are shown in Figure 4. As for 4 , the diamagnetic effect due to the peripheral 14π structure (i.e., structure d: $0,655 I_{0}$) is the main contributor to the total magnetic effect, although a small contribution comes from the diamagnetic effect of the cyclopentadienyl anion part (i.e., structure a: $0.200 I_{0}$) and azulene part (i.e., structure c: $0.192 I_{0}$) and the paramagnetic effect due to the cycloheptatrienyl anion part (i.e., structure b: $-0.090 I_{0}$). A similar tendency is observed for 16 (Figure 4). Thus the theoretical consideration suggests that peripheral 14π-conjugation plays a crucial role in the stablization of $\mathbf{4}$ and 16. This conclusion accords with the experimental results concerning 4. As for 15 , a significant contribution of the peripheral 14π-structure (i.e., structure f: $0.980 I_{0}$)

[^2]

Flgure 5, ${ }^{1} \mathrm{H}$ NMR 400 MHz , spectra of 19a and 19 b in CDCl_{3}.
Scheme V

is also expected. However, the considerably large antiaromatic contributions due to the cycloheptatrienyl anion structure (i.e., structure c: $-0.419 I_{0}$) and pentalene structure (i.e., structure d: $-0.380 I_{0}$) should bring about the destabilization of 15 . The estimated $\mathrm{p} k_{\mathrm{a}}$ (22) of the conjugate acid of 15^{9} accords with this interpretation.

Synthesis of Azulene Unit Fused Fulvene and Calicene. As perturbed systems of 4, (dimethylamino)fulvene (19) and bis(dimethylamino)fulvene (20) were prepared by the reaction of 4 with (chloromethylene)dimethylammonium chloride (17) and tetramethylchloroformamidium chloride (18), respectively (Scheme V). ${ }^{12}$ In the former case both the 1 - and 3 -isomers were isolated as green crystals in respective yields of 5% and 27%. In the latter reaction there was obtained only the 3 -isomer $\mathbf{2 0}$ as green crystals in 28% yield, Although the formation of the 1 -substituted isomer was realized, its isolation was unsuccessful because of rapid decomposition on purification by column chromatography. The substitution mode was determined from the $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectral data of 19a, 19b, and 20 (Figure 5). Thus, when the average chemical shift values (δ_{av}) of protons on the cyclopent[e]azulenyl ring are compared for the two isomers (19a and 19b), the value of 19 a ($7,41 \mathrm{ppm}$) is shown to be smaller than that of 19b (7.58 ppm), thereby suggesting that much more negative charge is distributed on the ring of 19a. Furthermore, the 1'-proton of 19a (8.09 ppm) appeared at lower magnetic field compared with that of $\mathbf{1 9 b}(7.44 \mathrm{ppm})$. The similar tendency was also found for the chemical shift of the methyl protons of the dimethylamino group (19a, 3.37; 19b, 3.24 ppm). These results demonstrate that a dipolar structure contributes more to the ground state of 19 a than to that of 19b. This difference is explained as follows. In

[^3] Ber. 1964, $97,1232$.

Figure 6, ${ }^{1} \mathrm{H} \mathrm{NMR}, 400 \mathrm{MHz}$, spectrum of 25 in CDCl_{3}.
Scheme VI

the case of 19a the induced negative charge can be stabilized by the polarization of an azulene ring, where a positive charge mainly distributes at $\mathrm{C}_{96}, \mathrm{C}_{6}$, and C_{4} of the cycloheptatrienyl part as shown in 21, while such a stabilization is less effective in the case of 19b

(see 22). The substitution mode in 20 was determined as the 3 -substituted one by reference to the ${ }^{1} \mathrm{H}$ NMR data of 19 a and 19b. Replacement ($\mathbf{2 0}$) of the dimethylamino group in 19b with a bis(dimethylamino) group provided increased polarization as is obvious from the δ_{av} value of 20 (7.42 ppm). However, from the comparison of the δ_{av} value of cyclopent[e]azulenyl ring of 19a, 19b, and 20 with that of 4 (6.70 ppm), it should be concluded that contribution of the dipolar structure to the ground state of each azulenofulvene is considerable but not so large.

Azulenocalicene can be prepared according to the Scheme VI. Thus, 4 was reacted with chlorobis(diisopropylamino)cyclopropenium perchlorate (23), followed by treatment with an equimolar amount of lithium diisopropylamide and then with aqueous perchloric acid solution to afford a mixture (87% yield) of cyclopent[e]azulenes substituted with bis(diisopropylamino)cyclopropenylium group 24a and 24b in a ratio of 71:29. ${ }^{13-15}$ 3 - Bis (diisopropylamino)cyclopropenylidene]cyclopent[[e]azulene (25) was isolated as unstable reddish purple crystals in 32% yield by chromatography of the mixture of $\mathbf{2 4 a}$ and $\mathbf{2 4 b}$ on basic alumina. However, 1-[bis(diisopropylamino)cyclopropenylidene]-
(13) Both $\mathbf{2 4 a}$ and $\mathbf{2 4 b}$ contain a mixture of $3 H$ and $1 H$ regioisomers. The ratios of isomers were determined to be 57:14 for 24a and 19:10 for 24b from their $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra.
(14) In the reaction of 4 with chloroiminium salts (17, 18, and 23), 3substituted products ($\mathbf{1 9 b}, \mathbf{2 0}$, and $\mathbf{2 4 b}$) were preferentially obtained in contrast with the preference for 1 -substitution in the reaction of 4 with iodomethane. We are now investigating this difference of reaction position.
(15) Protonation of purified $\mathbf{2 5}$ with dilute aqueous perchloric acid solution gave 24a quantitatively.

Scheme VII

Scheme VIII

cyclopent[e]azulene (27) was not eluted at all, probably because of its rapid decomposition on the column. The position of the diaminocyclopropenylidene group in $\mathbf{2 5}$ could not be determined directly to be the 1 - or 3 -position from its $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum (Figure 6). However, it was determined to be the 3 -substituted one from examination of the bis(diaminocyclopropenylio) cyclopent [e]azulenides obtained by the reaction of $\mathbf{2 5}$ with 23. As shown in Scheme VII, the reaction gave a mixture of 1,7- and 3,7-bis(diaminocyclopropenylio)cyclopent[e] azulenides $\mathbf{2 6 a}$ and $\mathbf{2 6 b}$ in 98% yield ($\mathbf{2 6 a}: \mathbf{2 6 b}=2: 3$), which clearly indicate that $\mathbf{2 5}$ is the 3 -substituted one and has the azuleno [5,4-a]calicene structure. If 25 were the 1 -substituted one (27), it would be difficult to explain that both products ($\mathbf{2 6 a}, \mathbf{b}$) are stable and are formed in a ratio of $2: 3$, because the reaction of 27 with 23 should lead to formation of the very overcrowded unstable product 28 together with 26a as shown in Scheme VIII.

In the electronic spectra of $\mathbf{2 5}$, its longest wavelength band (526 nm) is very close to that of $4(525 \mathrm{~nm}$), and its next longest absorption band appears at 403 nm . The latter band can be attributed to an intramolecular charge-transfer transition from the cyclopent [e]azulenide ring to the diaminocyclopropenylium group because this absorption band shifts to a much longer wavelength region with the decreasing polar nature of solvent (acetonitrile, 382 nm ; dichloromethane, 403 nm ; benzene, 424 nm). ${ }^{16}$ In the NMR spectrum the δ_{av} value (7.14 ppm) of $\mathbf{2 5}$ is much smaller than that of $\mathbf{2 0}$ (7.42 ppm), In particular, it is noted that the chemical shift of each ring proton is close to that of 4. These spectral data clearly indicate the large contribution of the dipolar structure to the ground state of $\mathbf{2 5}$, in which the anionic part, cyclopent [e]azulenide, should have the peripheral 14π-conjugated structure. From this discussion, 25 should not be regarded as an azulene unit fused calicene but as a perturbed triatridecafulvalene. Also, $\mathbf{2 6}$ has a considerably smaller δ_{av} value (26a, $7.31 \mathrm{ppm} ; \mathbf{2 6 b}, 7.34 \mathrm{ppm}$). Therefore it is suggested that both cations have the tripolar mesomeric structure as shown in formula 26a and 26b. In our laboratory similar tripolar mesomeric salts, 29 and 30, were already prepared, and their electronic

structures were elucidated. ${ }^{17}$ However, in the latter case the anionic part was a monocyclic or bicyclic system which is different

[^4]from the former case where the anionic part is a tricyclic ring system.

Experimental Section

Melting points were determined with a YANACO MP-micro melting point apparatus and are uncorrected. Microanalyses were performed at the Microanalysis Center, Kyoto University. NMR spectra were recorded on a JEOL FX-90Q (${ }^{13} \mathrm{C}$), JEOL JNM-GX400 (${ }^{1} \mathrm{H}$), JEOL JNM-PMX-60 $\left({ }^{1} \mathrm{H}\right)$, or Varian HA-100D $\left({ }^{1} \mathrm{H}\right)$ spectrometer, and chemical shift values are given in $\delta(\mathrm{ppm})$ relative to internal tetramethylsilane. Mass spectra were obtained with a JEOL JMS-DX300 spectrometer and IR spectra with a JASCO A-102 diffraction grating infrared spectrophotometer. Electronic spectra were obtained on a $\mathrm{Hi}-$ tachi 340 recording spectrophotometer.
3^{\prime} - and 5^{\prime} (Methylthio)-4,5-cyclopentenoazulenes (8 a and 8 b), To a solution of 4,5 -cyclopentenoazulene ${ }^{3}(1.04 \mathrm{~g}, 6.18 \mathrm{mmol})$ in 70 mL of dry THF under argon was added 0.227 M LDA in dry THF (30 mL , 6.80 mmol) at $-70^{\circ} \mathrm{C}$. The resulting brown solution was stirred for 0.5 h at the same temperature, and then dimethyl disulfide ($0.84 \mathrm{~mL}, 9.27 \mathrm{mmol}$) was added. The mixture was warmed up to room temperature, poured into water (150 mL), and extracted twice with hexane (100 mL). The blue organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo, followed by column chromatography on silica gel (hexane:dichloromethane $=5: 1$ as an eluant) to give a mixture of $8 \mathbf{a}$ and 8b $(0.464 \mathrm{~g}, 35 \%)$ as a blue oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}), 7.73(\mathrm{t}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 7.44(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 7.31$ $(\mathrm{d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 6.92(\mathrm{t}, 1 \mathrm{H}, J=10.0$ $\mathrm{Hz}), 5.82(\mathrm{dd}, 1 \mathrm{H}, J=6.5,1.5 \mathrm{~Hz}), 3.7-3.3,3.1-2.7$, and $2.6-2.2(\mathrm{~m}$ 4 H), 1.98 ($\mathrm{s}, 3 \mathrm{H}$); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3080, 2920, 1570, 1440, 1420, 1383, 782; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~nm}\right) \lambda_{\max }(\log \epsilon) 246$ (4.40), 280 (4.58), 314 (3.67), 326 (3.62), 341 (3.65), 354 (3.21), 382 (2.67), 404 (2.65), 600 (2.65); MS, $m / e\left(\mathrm{M}^{+}\right)$calcd 214.0815, obsd 214.0831.
$\mathbf{3}^{\prime}$ - and 5^{\prime}-(Methylsulfinyl)-4,5-cyclopentenoazulenes (9 a and 9 b), To a solution of a mixture of $8 \mathbf{8 a}$ and $\mathbf{8 b}(450 \mathrm{mg}, 2.10 \mathrm{mmol})$ in methanol (50 mL) was added sodium metaperiodate ($494 \mathrm{mg}, 2.31 \mathrm{mmol}$) in water $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After addition, the temperature was raised to room temperature, and stirring was continued overnight. The reaction mixture was filtered, and the precipitate was washed several times with methanol $(25 \mathrm{~mL})$. The combined filtrate was dried over anhydrouds sodium sulfate and concentrated in vacuo to give a blue solid of a mixture of 9a and $9 \mathrm{~b}(480 \mathrm{mg})$ in quantitative yield: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, 1$ $\mathrm{H}, J=10.0 \mathrm{~Hz}), 7.87(\mathrm{t}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 7.58(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz})$, 7.44 and $7.19(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 7.31(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 7.11(\mathrm{t}$, $1 \mathrm{H}, J=10.0 \mathrm{~Hz}$), 5.39 and $4.75(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.4 \mathrm{~Hz}), 3.8-2.3$ $(\mathrm{m}, 4 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3050,2900,1562,1440,1418$, 1380, 1350, 1030, 780; UV ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~nm}$) $\lambda_{\text {max }}(\log \epsilon) 244(4.09), 277$ (4.41), 326 (3.41), 342 (3.48), 354 (2.82), 384 (2.41), 408 (2.41), 600 (2.65); MS, $m / e\left(\mathrm{M}^{+}\right)$calcd 230.0765 , obsd 230.0726.

1 H - and 3 H -Cyclopent $[\mathrm{e}$]azulenes (10 a and 10b), A mixture of 9 a and 9 b ($450 \mathrm{mg}, 1.96 \mathrm{mmol}$) was dissolved in 50 mL of tetrachloromethane, and the solution was heated to reflux for 4 h . The reaction mixture was concentrated in vacuo until $1 / 4$ volume. The obtained greenish blue solution was chromatographed on neutral alumina with hexane-dichloromethane ($5: 1$). Eluted blue solution was concentrated in vacuo to $1 / 4$ volume (complete evaporation of solvent resulted in almost decomposition of product) and again chromatographed on silica gel to yield a $7: 3$ mixture of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}(133 \mathrm{mg}, 41 \%)$ as a blue oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{6}, J=9.8 \mathrm{~Hz}\right), 7.81\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{8}, J=\right.$ 3.7 Hz), $7.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, J=9.8 \mathrm{~Hz}\right.$), $7.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$ or $\mathrm{H}_{9}, J=3.2$ $\mathrm{Hz}), 7.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$ or $\left.\mathrm{H}_{9}, J=2.4 \mathrm{~Hz}\right), 7.08\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}, J=9.8 \mathrm{~Hz}\right.$), $6.80\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}_{3}, J=5.6,1.8 \mathrm{~Hz}\right), 6.40\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}_{2}, J=5.6,2.2 \mathrm{~Hz}\right)$, $4.06\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}_{1}, J=2.0 \mathrm{~Hz}\right)$ for $10 \mathrm{a} ; 8.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{6}, J=9.5 \mathrm{~Hz}\right)$, $7.83\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathrm{~J}=3.7 \mathrm{~Hz}\right), 7.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, J=9.8 \mathrm{~Hz}\right.$), 7.53 (dtd, $1 \mathrm{H}, \mathrm{H}_{1}, J=5.6,1.8,0.7 \mathrm{~Hz}$), $7.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$ or $\mathrm{H}_{9}, J=3.9 \mathrm{~Hz}$), 7.33 (d, $1 \mathrm{H}, \mathrm{H}_{7}$ or $\mathrm{H}_{9}, J=2.9 \mathrm{~Hz}$), $7.00\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}, J=9.8 \mathrm{~Hz}\right), 6.95(\mathrm{dt}$, $1 \mathrm{H}, \mathrm{H}_{2}, J=5.6,2.1 \mathrm{~Hz}$), 3.73 (brs $2 \mathrm{H}, \mathrm{H}_{3}$) for 10b; IR (neat, cm^{-1}) $3050,2900,1574,1430,1380,1360,803,770,735 ; \mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl} 2, \mathrm{~nm}\right)$ $\lambda_{\text {max }}(\log \epsilon) 266(4.28), 294$ (4.36), 340 (3.43), 356 (3.49), 370 (3.34), 384 (3.10), 580 (2.63), 624 (2.59), $690(2.18) ; \mathrm{MS}, m / e\left(\mathrm{M}^{+}\right) \mathrm{calcd}$ 166.0782, obsd 166.0775 .

Lithlum Cyclopent [e]azulenide (4), A solution of a mixture of 10a and $\mathbf{1 0 b}(50 \mathrm{mg}, 0.30 \mathrm{mmol})$ in THF- $d_{8}(0.4 \mathrm{~mL})$ was put into an NMR sample tube under argon, cooled to $-70^{\circ} \mathrm{C}$, and $1.6 \mathrm{M} n$-butyllithium $(0.20 \mathrm{~mL}, 0.32 \mathrm{mmol})$ in hexane was added. The resulting reddish purple solution was immediately subject to the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR measurements.

1- and 3-Methylcyclopent e lazulenes (13a and 13b), To a solution of a mixture of 10a and 10 b ($22 \mathrm{mg}, 0.13 \mathrm{mmol}$) in THF (5 mL) was added $1.6 \mathrm{M} n$-butyllithium ($0.08 \mathrm{~mL}, 0.13 \mathrm{mmol}$) in hexane at $-70^{\circ} \mathrm{C}$. The resulting reddish purple solution was reacted with iodomethane (0.08 mL , 1.3 mmol) and then gradually warmed to room temperature. The blue
reaction mixture was poured into water and extracted twice with hexane $(20 \mathrm{~mL})$. The hexane solution was dried over a nhydrous sodium sulfate and concentrated in vacuo to give 6:1 mixture of 13 a and $\mathbf{1 3 b}$ (23 mg , 96%) as a blue oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.27\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{6}, J=9.7 \mathrm{~Hz}\right)$, $7.88\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{8}, J=3.8 \mathrm{~Hz}\right), 7.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, J=9.7 \mathrm{~Hz}\right), 7.34(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}_{7}$ or $\mathrm{H}_{9}, J=3.8 \mathrm{~Hz}$), $7.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$ or $\mathrm{H}_{9}, J=3.8 \mathrm{~Hz}$), 7.14 $\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}, J=9.7 \mathrm{~Hz}\right), 6.81\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{3}, J=5.5,1.2 \mathrm{~Hz}\right), 6.52(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{H}_{2}, J=5.5,2.0 \mathrm{~Hz}\right), 4.11\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{H}_{1}, J=7.5 \mathrm{~Hz}\right), 1.50(\mathrm{~d}, 3 \mathrm{H}$, $\mathrm{Me}, J=7.5 \mathrm{~Hz}$) for 13 a (the proton signals of 13 b cannot be fully assigned because of partial overlap with those of 13a); IR (neat, cm^{-1}) 3050, 2950, 2920, 1580, 1560, 1512, 1434, 1353, 800; MS, $m / e\left(\mathrm{M}^{+}\right)$ calcd 180.0939 , obsd 180.0927 . Chromatography of the crude methylated product on silica gel with hexane-dichloromethane (5:1) afforded the pure but isomerized methylcyclopent [e]azulenes (14 a and 14b) as a blue oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, J=9.7 \mathrm{~Hz}\right), 8.0-6.4(\mathrm{~m}$, 6 H), 4.13 and 3.55 (brs, 2 H), $2.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Me}\right.$); IR (neat, cm^{-1}) 3050, $2950,2910,1600,1550,1430,1380,1353,1224,1025,802,768$; MS, $\mathrm{m} / \mathrm{e}\left(\mathrm{M}^{+}\right)$calcd 180.0939 , obsd 180.0931 .
Reaction of a Mixture of 10a and 10b with Lithium Cyclopentadienide for the Estimation of Relative $\mathrm{p} \mathrm{k}_{\mathrm{a}}$ Value, With lithium cyclopentadienide (0.22 mmol) in THF (3 mL) in place of n-butylithium the same reaction of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ ($36 \mathrm{mg}, 0.22 \mathrm{mmol}$) with iodomethane ($0.14 \mathrm{~mL}, 2.2$ mmol) was carried out. A mixture of 13a and 13b was obtained in quantitative yield. The reaction carried out by using lithium malononitrile in place of lithium cyclopentadienide gave no methylated cyclopent $[e]$ azulene.

1- and 3-[(Dimethylamino) methylidene]cyclopent $[e]$ azulenes (19a and 19b), To a solution of (chloromethylene) dimethylammonium chloride ($44 \mathrm{mg}, 0.34 \mathrm{mmol}$) in THF (5 mL) was added a THF solution (5 mL)
 $(0.23 \mathrm{~mL}, 0.35 \mathrm{mmol})$ in hexane at $-70^{\circ} \mathrm{C}$. After mixture was stirred for $1 \mathrm{~h}, 0.12 \mathrm{M}$ LDA ($3 \mathrm{~mL}, 0.35 \mathrm{mmol}$) in THF was added to the solution and then the reaction mixture was gradually warmed to room temperature. The resulting green solution was concentrated in vacuo and the residue was chromatographed on neutral alumina with dichloro-methane-hexane ($2: 1$). From the first eluate 19 a was obtained as green crystals (3.8 mg) in 5% yield, and from the second eluate 19b was obtained as green crystals (20.3 mg) in 27% yield. $19 \mathrm{a}: \mathrm{mp} 68-72^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, J=9.5 \mathrm{~Hz}\right), 8.09\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 7.85$ (dd, $1 \mathrm{H}, \mathrm{H}_{6}, J=9.5,0.7 \mathrm{~Hz}$), $7.68\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{8}, J=3.8 \mathrm{~Hz}\right.$), $7.22(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{7,9}\right), 7.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{2}, J=5.2 \mathrm{~Hz}\right), 6.99\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}, J=9.5 \mathrm{~Hz}\right)$, $6.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{3}, J=5.2 \mathrm{~Hz}\right), 3.37\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right) ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 3070, 2920, 1610, 1370, 1324, 1127, 997, 795; UV ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~nm}$) $\lambda_{\text {max }}$ ($\log \epsilon$) 277 (4.50), 305 (4.18), 387 (4.30), 413 (4.27), 451 (sh, 3.90), 560 (2.82); MS, $m / e\left(\mathrm{M}^{+}\right)$caled 221.1204, obsd 221.1185. 19b: $\mathrm{mp} 50-52$ ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, J=9.9 \mathrm{~Hz}\right), 7.96(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{6}, J=9.9 \mathrm{~Hz}\right), 7.71\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{8}, J=3.9 \mathrm{~Hz}\right), 7.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{i}}, J=\right.$ 5.0 Hz), $7.48\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{29}, J=5.0 \mathrm{~Hz}\right.$), $7.44\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 7.19(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{H}_{7}, J=3.9,1.5 \mathrm{~Hz}\right), 7.00\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5} J=9.9 \mathrm{~Hz}\right), 3.24(\mathrm{~s}, 6 \mathrm{H}$, NMe_{2}) $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3050,2910,1610,1370,1120,998,800,760$; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~nm}\right) \lambda_{\text {max }}(\log \epsilon) 255(4.26), 296$ (4.22), $394(4.38), 412$ (4.30), 450 (sh, 3.87), 570 (2.98); MS, $m / e\left(\mathrm{M}^{+}\right)$calcd 221.1204, obsd 221.1197.

3-[Bis(dimethylamino)methylidene]cyclopent[e]azulene (20), To a solution of chloroformamidium chloride ${ }^{12}$ ($66.8 \mathrm{mg}, 0.39 \mathrm{mmol}$) in THF (5 mL) was added a THF solution of 4 prepared from $10(64 \mathrm{mg}, 0.39$ mmol) at $-78^{\circ} \mathrm{C}$. After the solution was stirred for $1 \mathrm{~h}, 0.13 \mathrm{M}$ LDA ($3 \mathrm{~mL}, 0.39 \mathrm{mmol}$) in THF was added and then the reaction mixture was gradually warmed to room temperature. The resulting green solution was concentrated in vacuo and chromatographed on neutral alumina with benzene-acetone ($8: 2$) to give $\mathbf{2 0}(28.9 \mathrm{mg}$) as unstable green crystals in 28% yield: $\mathrm{mp} 185-187^{\circ} \mathrm{C} \mathrm{dec} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}_{4}, J=9.3 \mathrm{~Hz}$), 7.63 (dd, $\left.1 \mathrm{H}, \mathrm{H}_{8} J=3.9,3.7 \mathrm{~Hz}\right), 7.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{6}\right.$, $J=10.0 \mathrm{~Hz}$), 7.42 (ddd, $1 \mathrm{H}, \mathrm{H}_{9}, J=3.7,1.5,0.7 \mathrm{~Hz}$), 7.34 (dd, 1 H , $\left.\mathrm{H}_{1}, J=4.8,0.3 \mathrm{~Hz}\right), 7.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{2}, J=4.8 \mathrm{~Hz}\right), 7.09\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$, $J=3.9,1.5 \mathrm{~Hz}), 6.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{5}, J=9.3,10.0 \mathrm{~Hz}\right), 3.09(\mathrm{~s}, 12 \mathrm{H}$, NMe_{2}); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) $3060,2910,1590,1530,1375,1341,1000$; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~nm}\right) \lambda_{\max }(\log \epsilon) 254(4.39), 300(\mathrm{sh}, 4.13), 336(\mathrm{sh}, 3.74), 420$ (4.55), 482 (sh, 3.87), 600 (2.99); MS, $m / e\left(\mathrm{M}^{+}\right)$calcd 264.1627, obsd 264.1641 .

7- and 9-[Bis(disopropylamino) cyclopropenyllo]cyclopent $[e$]azulenes (24a and 24b), To a solution of a mixture of 10 a and $10 \mathrm{~b}(72.6 \mathrm{mg}$, 0.437 mmol) in THF (12 mL) was added 0.11 M LDA ($8 \mathrm{~mL}, 0.874$ mmol) in THF at $-78^{\circ} \mathrm{C}$. After the solution was stirred for awhile, was added chlorobis(diisopropylamino)cyclopropenium perchlorate (162 mg , $0.436 \mathrm{mmol})$. The reaction mixture was gradually warmed to $0^{\circ} \mathrm{C}$ and poured into cold dilute aqueous perchloric acid solution and extracted twice with dichloromethane (20 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo to give a blue solid. Recrystallization of the solid from dichloromethane-ther gave a mixture
of 24a and 24b as blue crystals (191 mg) in $\mathbf{8 7 \%}$ yield: $\mathrm{mp} 231-234^{\circ} \mathrm{C}$ $\mathrm{dec} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.39\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{6}, J=9.7 \mathrm{~Hz}\right), 7.92(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{4}, J=9.7 \mathrm{~Hz}\right), 7.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, J=4.0 \mathrm{~Hz}\right), 7.53\left(\mathrm{bd}, 1 \mathrm{H}, \mathrm{H}_{1}, J=\right.$ 3.9 Hz), 7.41 (brd, $\left.1 \mathrm{H}, \mathrm{H}_{2}, J=3.9 \mathrm{~Hz}\right), 7.40\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, J=4.0 \mathrm{~Hz}\right.$), $7.23\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}, J=9.7 \mathrm{~Hz}\right), 4.31$ and $3.74(\mathrm{~m}, 4 \mathrm{H}, i$-Pr), 3.80 (brs, $\left.2 \mathrm{H}, \mathrm{H}_{3}\right), 1.55,1.46,1.18$ and $1.05(\mathrm{~d}, 24 \mathrm{H}, i-\mathrm{Pr})$ for $3 H$ isomer of 24 a ; $8.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{6}, J=10.0 \mathrm{~Hz}\right), 7.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, J=10.0 \mathrm{~Hz}\right), 7.76$ (d, $\left.1 \mathrm{H}, \mathrm{H}_{8}, J=4.2 \mathrm{~Hz}\right), 7.36\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}, J=10.0 \mathrm{~Hz}\right), 7.35(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}_{9}, J=4.2 \mathrm{~Hz}$), $6.90\left(\mathrm{brs}, 2 \mathrm{H}, \mathrm{H}_{2,3}\right), 4.00\left(\mathrm{brs}, 2 \mathrm{H}, \mathrm{H}_{1}\right)$ for $1 H$ isomer of 24 a ; $8.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{6}, J=9.8 \mathrm{~Hz}\right), 7.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, J=9.8 \mathrm{~Hz}\right)$, $7.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, J=4.2 \mathrm{~Hz}\right.$), 7.62 (brd, $1 \mathrm{H}, \mathrm{H}_{1}, J=5.4 \mathrm{~Hz}$), 7.18 (brd, $1 \mathrm{H}, \mathrm{H}_{2}, J=5.4 \mathrm{~Hz}$), 3.89 (brs, $2 \mathrm{H}, \mathrm{H}_{3}$) for 3 H isomer of $24 \mathrm{~b} ; 8.31$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{6}, J=9.5 \mathrm{~Hz}\right), 4.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{1}\right)$ for $1 H$ isomer of 24 b (other signals could not be assigned because of overlap with those of other isomers, but from the integral ratio of methylene protons the ratio of $3 H-24 \mathrm{a}, 1 \mathrm{H}-\mathbf{2 4} \mathrm{a}, 3 H-\mathbf{2 4 b}$, and $1 H-24 \mathrm{~b}$ isomers was determined to be 57:14:19:10); IR (KBr, cm ${ }^{-1}$) 2970, 1900, 1548, 1090; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~nm}\right)$ $\lambda_{\max }(\log \epsilon) 224$ (4.50), 269 (4.65), 305 (4.68), 359 (4.14), 562 (3.10), 600 (sh, 3.08), 660 (sh, 2.70). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{ClO}_{4}: \mathrm{C}, 67.12$; H, 7.44; N, 5.59. Found: C, 66.51; H, 7.32; N, 5.65 .

3-[Bis(dilsopropylamino) cyclopropenylidene]cyclopent[e]azulene (25), A mixture of $\mathbf{2 4 a}$ and $\mathbf{2 4 b}$ ($56 \mathrm{mg}, 0.11 \mathrm{mmol}$) was chromatographed on basic alumina (Woelm B Akt II) with benzene-acetone (7:3) to give $\mathbf{2 5}$ as reddish purple crystals (14 mg) in 32% yield: $\mathrm{mp} 171-175^{\circ} \mathrm{C} \mathrm{dec}$; ${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 8.11\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}\right.$ or $\left.\mathrm{H}_{6}, J=9.3 \mathrm{~Hz}\right), 7.94(\mathrm{~d}, 1 \mathrm{H}$, H_{4} or $\mathrm{H}_{6}, J=9.8 \mathrm{~Hz}$), $7.23\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{8}, J=4.2,3.2 \mathrm{~Hz}\right), 7.03(\mathrm{~d}, 1$ $\left.\mathrm{H}, \mathrm{H}_{2}, J=4.4 \mathrm{~Hz}\right), 6.84\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$ or $\left.\mathrm{H}_{9}, J=4.2 \mathrm{~Hz}\right), 6.74(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{1}, J=4.4 \mathrm{~Hz}\right), 6.65\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}, J=9.5 \mathrm{~Hz}\right), 6.59\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$ or H_{9}, $J=3.2 \mathrm{~Hz}), 3.99(\mathrm{~m}, 4 \mathrm{H}, i-\mathrm{Pr}), 1.31(\mathrm{~d}, 24 \mathrm{H}, i-\mathrm{Pr}) ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 3050, 2950, 1890, 1592, 1522, 1300; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~nm}\right) \lambda_{\text {max }}(\log \epsilon) 243$ (4.25), 273 (4.27), 299 (sh, 4.20), 403 (4.03), 526 (3.73); MS m/e (M^{+}) calcd 400.2878 , obsd 400.2851 .

1,7-and 3,7-Bis(bis(dilsopropylamino) cyclopropenylio]cyclopent[e]az-
ulenides (26a and 26b), To a solution of $25(21 \mathrm{mg}, 0.051 \mathrm{mmol})$ and triethylamine ($10 \mathrm{mg}, 0.10 \mathrm{mmol}$) in dry dichloromethane (5 mL) was added chlorobis(diisopropylamino)cyclopropenium perchlorate (19 mg , 0.051 mmol) at room temperature. After stirring under argon overnight, the reaction mixture was concentrated in vacuo to give a reddish purple solid, and recrystallization from dichloromethane-ether afforded a $2: 3$ mixture of $\mathbf{2 6 a}$ and $\mathbf{2 6 b}(37 \mathrm{mg})$ as dark reddish purple crystals in 98% yield: $\mathrm{mp} 163-168{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{6}\right.$, $J=9.5 \mathrm{~Hz}), 7.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, J=9.5 \mathrm{~Hz}\right), 7.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{2}\right.$ or H_{8}, J $=4.0 \mathrm{~Hz}), 7.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{2}\right.$ or $\left.\mathrm{H}_{8}, J=4.4 \mathrm{~Hz}\right), 6.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{3}\right.$ or H_{9}, $J=4.4 \mathrm{~Hz}), 6.83\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}, J=9.5 \mathrm{~Hz}\right), 6.69\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{3}\right.$ or H_{9}, J $=4.0 \mathrm{~Hz}), 4.13(\mathrm{~m}, i-\mathrm{Pr}), 1.56,1.54$, and $1.43(\mathrm{~d}, i-\mathrm{Pr})$ for $26 \mathrm{a} ; 8.04(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{H}_{4,6}, J=9.6 \mathrm{~Hz}\right), 7.26\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{2,8}, J=4.5 \mathrm{~Hz}\right), 6.93\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{5}\right.$, $J=9.6 \mathrm{~Hz}), 6.91\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{1,9}, J=4.5 \mathrm{~Hz}\right), 4.13(\mathrm{~m}, i-\operatorname{Pr}), 1.56,1.54$, and 1.43 (d, i-Pr) for $\mathbf{2 6 b}$ (the protons of isopropyl group of 26a overlap with those of 26b); IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2970, 1880, 1508, 1460, 1340, 1090; $\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~nm}\right) \lambda_{\max }(\log \epsilon) 255(4.23), 322(4.37), 374$ (4.05), 424 (4.00), 564 (4.34). Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{63} \mathrm{~N}_{4} \mathrm{ClO}_{4}: \mathrm{C}, 70.23 ; \mathrm{H}, 8.63$; N, 7.62. Found: C, 70.22, H, 8.73; N, 7.47.

Acknowledgment, We thank Professor Jun-ichi Aihara for the calculation of resonance energy, ring current, and magnetic susceptibility of 4,15 , and 16 .

Registry No, 4, 88726-17-4; 7, 14311-05-8; 8a, 88726-13-0; 8b, 88726-14-1; 9a, 88726-15-2; 9b, 88726-16-3; 10a, 228-82-0; 10b, 13777-90-7; 13a, 88726-18-5; 13b, 91861-71-1; 14a (isomer 1), 91861-72-2; 14a (isomer 2), 91861-73-3; 14b (isomer 1), 91861-74-4; 14b (isomer 2), 91861-75-5; 18, 30388-20-6; 19a, 91861-76-6; 19b, 91861-77-7; 20, 91861-78-8; 3H-24a, 91861-81-3; 1H-24a, 91861-83-5; 3H-24b, 91861-85-7; 1H-24b, 91861-87-9; 25, 91861-79-9; 26a, 91861-89-1; 26b, 91861-91-5; chlorobis(diisopropylamino)cyclopropenium perchlorate, 74507-77-0; dimethyl disulfide, 624-92-0; 17, 3724-43-4.

The $\mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}$Potential Surface ${ }^{1}$

Michael J. S. Dewar* and Charles H. Reynolds
Contribution from the Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712. Received January 30, 1984

Abstract

MINDO/3 calculations are reported for the $\mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}$systems. Contrary to conclusions from ab initio calculations but in agreement with experiment, the cyclopropylcarbinyl cation and "cyclobutyl cation" are both predicted to correspond to minima on the potential surface, the latter being indeed the lower in energy and having a nonclassical structure with a relatively strong transannular bond, corresponding to l-protonated bicyclobutane. The cyclopropylcarbinyl cation is best formulated as a π complex. Interconversion of the two isomers was studied and also their conversions to the α-methylallyl cation. The formation of 1 -substituted 3-butenes does not take place via 3-buten-1-yl cation.

Thirty years have now elapsed since Roberts ${ }^{2}$ first showed the cyclopropylcarbinyl cation (1) to have a nonclassical structure. During this period numerous experimenta ${ }^{3-5}$ and theoretical ${ }^{6-10}$

[^5]studies have been reported of 1 and the rearrangements it, and its derivatives, undergo.

The experimental studies indicate that 1 undergoes a rapid degenerate interconversion with the two isomers where different pairs of methylene groups are linked, and also rapid interconversion with the cyclobutyl cation (2,3). Under ionizing conditions, ionizable derivatives $(\mathbf{4}, 5)$ of $\mathbf{1}$ or $\mathbf{2}(\mathbf{3})$ interconvert rapidly, while a slower rearrangement leads to the corresponding 3-butenyl derivative, 6. It has usually been assumed that the latter is formed via the corresponding cation (7).

Calculations ${ }^{6}$ by the Roothaan-Hall (RH; "ab initio SCF") method, using the STO-3G basis set, predicted 1 to be the only minimum of the type $(\mathrm{CH})\left(\mathrm{CH}_{2}\right)_{3}{ }^{+}$on the $\mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}$potential

[^6] 5537.
(8) Radom, L.; Pople, J. A.; Buss, V.; Schleyer, P. v. R. J. Am. Chem. Soc. 1970, 92, 6380.
(9) Cremer, D.; Kraka, E.; Slee, T. S.; Bader, R. F. W.; Lau, C. D. H.; Nguyen-Dahg, T. T.;, MacDougall, P. J. J. Am. Chem. Soc. 1983, 105, 5069.
(10) Schmitz, L. R.; Sorensen, T. S. J. Am. Chem. Soc. 1982, 104, 2605 and references therein.

[^0]: (1) Ring currents induced in constituent π-electron rings of $\mathbf{1}$ and $\mathbf{3}$ are as follows: 1a, $0.504\left(\left(I_{0}\right) 2\right) ; \mathbf{1 b}, 0.589 I_{0} ; \mathbf{3 a}$, cycloheptatrienyl part $-0.043 I_{0}$, cyclopentadienyl part $0.038 I_{0} ; \mathbf{3 b}, 1.111 I_{0}$, where I_{0} is the ring current of benzene. Resonance energy of a polycyclic conjugated π-system is known to be given by the sum of the resonance energy of each ring which is proportional to the quotient of the ring current divided by the ring area. ${ }^{11}$
 (2) (a) Jackman, L. M. "Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry", 2nd ed.; Pergamon Press: London, 1969; p 266. (b) Buncel, E. "Carbanions: Mechanistic and Isotopic Aspects"; Elsevier: Amsterdam, 1975; p 8.

[^1]: (4) Yoshida, Z.; Shibata, M.; Sugimoto, T. Tetrahedron Lett. 1983, 24, 4585.
 (5) Llinas, J. R.; Roard, D.; Derbesy, M.; Vincent, E. J. Can. J. Chem. 1975, 53, 2911.
 (6) Prinzbach, H.; Freudenberger, V.; Scheidegger, U. Helv. Chim. Acta 1967, 50, 1087.
 (7) Becker, B. C.; Neumann, G.; Schmickler, H.; Müllen, K. Angew. Chem., Int. Ed. Engl. 1983, 22, 241.

[^2]: (9) Fleischer, R.; Hafner, K.; Wildgruber, J.; Hochmann, P.; Zahradnik, R. Tetrahedron 1968, 24, 5943.
 (10) (a) Aihara, J. J. Am. Chem. Soc. 1976, 98, 2750. (b) Aihara, J. Bull. Chem. Soc. Jpn. 1978, 51, 3540.
 (11) (a) Aihara, J. J. Am. Chem. Soc. 1979, 101, 5913. (b) Aihara, J.; Horikawa, T. Bull. Chem. Soc. Jpn. 1983, 56, 1853.

[^3]: (12) Eilingsfeld, H.; Neubauer, G.; Seefelder, M.; Weidinger, H. Chem.

[^4]: (16) In the UV spectra of 20 in dichloromethane, the absorption band at 420 nm shifts to a slightly longer wavelength region with the decreasing solvent polarity (acetonitrile 417 nm , dichloromethane 420 nm , benzene 426 nm). In the case of 19a and 19b, such a solvent effect was not observed.
 (17) Yoshida, Z.; Araki, S.; Ogoshi, H. Tetrahedron Lett. 1975, 16, 19.

[^5]: (1) Part 68 of the series Ground States of Molecules. For Part 67, see: Dewar, M. J. S.; Healy, Eamonn F.; Stewart, James J. P. J. Compt. Chem., in press.
 (2) For reviews see the following: (a) Richey, G. "Carbonium Ions", Olah, G. A., Schleyer, P. v. R., Eds.; Wiley-Interscience: New York, 1972; Vol. III, Chapter 26. (b) Wiberg, K. B.; Hess, B. A.; Ashe, A. J., ref 2a, Chapter 26. (c) Brown, H. G. "The Nonclassical lon Problem"; Plenum Press: New York, 1977; Chapter 5.
 (3) Staral, J. S.; Yavari, I.; Roberts, J. D.; Prakash, G. K. S.; Donovan, D. J.; Olah, G. A. J. Am. Chem. Soc. 1978, 100, 8016.
 (4) Cacae, F.; Speranza, M. J. Am. Chem. Soc. 1979, 101, 1587.
 (5) (a) Olah, G. A.; Prakash, G. K. S.; Donovan, D. J.; Yavori, I. J. Am. Chem. Soc. 1978, 100, 7085. (b) Kirchen, R. P.; Sorenson, T. S. Ibid. 1977, 6687. (c) Kelley, D. P.; Underwood, G. R.; Barron, P. F. Ibid. 1976, 98, 3106. (d) Olah, G. A.; Jeuell, C. L.; Kelley, D. P.; Porter, R. D. Ibid. 1972, 94, 146. (e) Schmitz, L. R.; Sorensen, T. S. Ibid. 1982, 104, 2600 . (f) Olah, G. A.; Prakash, G. K. S.; Nakajima, T. J. Am. Chem. Soc. 1982, 104, 1031. (g) Olah, G. A.; Kelly, D. P.; Jeuell, C. L.; Porter, R. D. J. Am. Chem. Soc. 1970, 92, 2544
 (6) (a) Hehre, W. J.; Hiberty, P. C. J. Am. Chem. Soc. 1974, 96, 302. (b) Hehre, W. J.; Hiberty, P. C. Ibid. 1972, 94, 5917.

[^6]: (7) Levi, D. A.; Blurock, E. S. Hehre, W. J. J. Am. Chem. Soc. 1979, 101,

